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The Rayleigh–Taylor instability of a system of three fluids separated by one unstable
and one stable interface has been investigated experimentally. The experiments were
gravitationally driven and conducted with miscible liquids consisting of salt solutions
and fresh water. The lower two layers are initially gravitationally stable and are
formed by depositing the lighter fluid on top of a thicker layer of the heavier one.
The relatively thick top layer is initially separated from the two lower layers by
a rigid barrier that is removed at the start of an experiment. In situations where
the density of the bottom-layer fluid equals that of the top-layer fluid, the resulting
turbulent flow is found to be self-similar as demonstrated by the collapse of the mean
concentration distributions as well as the behaviour of the decay of the peak of the
mean concentration profiles. In this configuration, the erosion of the bottom layer
by the turbulence generated by the upper unstable interface is found to be small.
When the density of the bottom-layer fluid is increased above that of the top-layer
fluid, the degree of erosion is further decreased. In the cases where the lower interface
is stably stratified at late-time, the entrainment rate E at the lower (statically stable)
interface is found to follow a power law of the Richardson number, i.e. E ∝ Ri−n,
with n ≈ 1.3, a result in agreement with studies of mixing induced by oscillating grids.
When the density of the bottom-layer fluid is decreased below that of the top-layer
fluid, the erosion increases as expected. However, in this case, the overall density
distribution is such that it is globally Rayleigh–Taylor unstable at late time. In this
situation, the turbulent mixing region at late times grows similarly to that of single-
interface Rayleigh–Taylor instability with approximately the same value of the growth
constant. In these late-time unstable experiments the density profile approaches that
of an equivalent two-layer Rayleigh–Taylor unstable system.

1. Introduction
Rayleigh–Taylor (RT) instability plays a fundamental role in the mixing processes

of many stratified flows. In its simplest form, RT instability is produced by accelerating
a density interface in the direction of its normal. If the direction of acceleration is
from the lighter fluid into the heavier one, small perturbations on the nominally
planar interface will grow and ultimately develop into a turbulent flow. Rayleigh–
Taylor-generated turbulence has important consequences in astrophysical, geophysical
and technological applications. A technological application of particular current
importance is inertial confinement fusion (ICF), in which the turbulence generated
by RT instability is detrimental. As a result, the presence of RT mixing has delayed
the achievement of a productive fusion reaction.
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Rayleigh (1900) was the first to analyse Rayleigh–Taylor instability in the context of
an unstable stratification in a gravitational field. Later, Taylor (1950) considered the
growth of perturbations to a flat interface separating two fluids of unequal densities
when subject to an acceleration. Since then, Rayleigh–Taylor instability has received
considerable attention in the form of analytical, numerical and experimental research.
A comprehensive review of early work is given by Sharp (1984) and more recent
work is summarized by Dimonte et al. (2004). Most of this work has been confined
to the simplest possible case: two layers of uniform density and approximately equal
depth.

This standard Rayleigh–Taylor instability has a number of key characteristics. If the
instability grows from a single mode disturbance, the initial linear phase of growth
is exponential, but this saturates as the flow becomes nonlinear, leading to a linear
growth at later times. In contrast, naturally occurring instabilities develop from a range
of wavelengths that interact and grow as the instability develops. This continual
growth leads to the development of a self-similar character, where the dominant wave-
length scales with the width of the developing mixing zone. Experimental evidence
suggests that the half width δ, of the mean concentration profile grows as δ =αAgt2,
where A= (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number (ρ1 and ρ2 are the density of
the upper and lower layers, respectively), g is the driving acceleration, and α is
a dimensionless constant. This relationship is borne out by both experiments and
numerics, although there has been a long debate on the precise value of the constant
of proportionality α. Dimonte et al. (2004) summarize the values of α obtained
by a large number of experimental and computational studies. Recent work (e.g.
Dalziel, Linden & Youngs 1999; Cook & Dimotakis 2001) shows that the growth rate
constant α depends not only on the density contrast, but also on the structure of the
initial conditions. Although the high wavenumber modes are the most unstable in the
linear phase, their growth rate saturates earlier, with further development of the t2

growth relying on the lower wavenumber modes. If these lower wavenumber modes
are present in the initial conditions they develop more quickly and begin to dominate
the growth earlier (and hence yield a faster growth) than if the modes have to develop
purely from the nonlinear interaction of high-wavenumber modes. In either case, as
the instability develops, the high-wavenumber spectrum tends towards a self-similar
cascade (Dalziel et al. 1999), with the density field adopting a fractal structure.

This paper presents experiments of flows one level greater in complexity than the
standard two-layer instability. In particular, we investigate the effect of introducing
a third layer to the problem, but restrict ourselves to the Boussinesq limit where the
density differences are small compared to the densities themselves. In this limit, the
density differences are important only when multiplied by the driving acceleration,
g. The densities of the three layers, ρ1, ρ2 and ρ3 as shown in figure 1, are chosen
so that the upper interface is statically unstable (i.e. ρ1 >ρ2) and the lower interface
is statically stable with ρ2 < ρ3. From these three densities we may define two
independent dimensionless quantities analogous to the two-layer Atwood number:
A12 = (ρ1 − ρ2)/(ρ1 + ρ2) and A13 = (ρ1 − ρ3)/(ρ1 + ρ3). In addition, it is useful to intro-
duce the dimensionless time τ12 = (A12g/h2)

1/2t . For this paper we restrict ourselves to
A12 > 0 since the upper interface is always statically unstable, and A13 < A12 since we
have a Boussinesq system and the lower interface is always statically stable. Thus the
experiments begin with the RT instability of only the upper interface until τ12 = O(1),
when it begins to interact with the lower interface. To understand the development
of the flow after this time also requires a knowledge of the relationship between ρ1

and ρ3 (or A13) and the depth (or thickness) of the middle layer. We will consider
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Figure 1. Schematic of the experimental apparatus.

cases where the flow is globally stable with A13 < 0, globally neutral with A13 = 0, and
globally unstable with A13 > 0.

The introduction of the lower locally stable interface changes the problem of
Rayleigh–Taylor instability to a combined problem where the kinetic energy produced
by the Rayleigh–Taylor instability in turn drives a turbulent entrainment across
the lower stable interface. Most previous work on mixing across an interface has
fallen into one of two categories: internal mixing, where energy is extracted from a
mean shear flow through Kelvin–Helmholtz and Hölmböe instabilities (e.g. Strang &
Fernando 2001), or external mixing, where the source of turbulence is remote from
the interface (e.g. Nokes 1988). The mixing produced by Rayleigh–Taylor instability
interacting with the stable interface includes elements of both of these. It also has
some of the characteristics of the mixing produced by buoyant plumes interacting
with an interface (e.g. Baines 1975; Kumagai 1984), but unlike the plume, it acts in
a statistically uniform manner over the entire surface of the interface. In cases when
the bottom layer is denser than the top layer (or indeed of the same density), then we
may anticipate that the entrainment across the interface will be more similar to that
of external mixing.

Although much progress has been made in quantifying external mixing, it has
become clear that the mixing efficiency (the ratio of the energy lost to mixing to the en-
ergy provided to the system) depends not only on the Richardson number of the flow,
but also on the method by which energy is supplied to the flow (Balmforth, Llewellyn
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Smith & Young 1998). In most cases, the mixing efficiency is seen to decrease at
high stabilities (Richardson numbers), leading to a sharpening of interfaces and the
formation of layers from an initially smooth density profile (e.g. Holford & Linden
1999); in some cases, the mixing efficiency plateaus but does not decrease (e.g.
Higginson 2000). Other apparent inconsistencies include the dependence of the
entrainment rate on the Schmidt number Sc = ν/κ , with entrainment rates decreasing
more rapidly with increasing Richardson number for higher Schmidt numbers. This
investigation therefore is interesting not only in the context of Rayleigh–Taylor
instability, but also in that it investigates the mixing induced by an energy source not
previously considered.

For the present paper, we restrict our attention to the case where the thickness of
the middle layer is much less than that of the top layer. In this case the mixed zone
will continue to grow upwards, away from the initial location of the unstable interface,
well after it begins to interact with the initially stable interface. Our experiments are
designed to illuminate the basic dynamics of the flow and the resultant changes in
the mean density profile. We explore the self-similar development of the mixing zone,
and demonstrate that this is reflected by self-similarity in the entrainment across the
lower, initially stable interface.

2. Experimental details
The experiments were conducted using the apparatus employed by Dalziel et al.

(1999) in their study of single-interface Rayleigh–Taylor instability. This apparatus,
which was derived from that used by Linden & Redondo (1991) and Linden, Redondo
& Youngs (1994), consists of a rectangular acrylic tank measuring 40 cm in length,
20 cm in width and 60 cm in height (the vertical dimension) and is filled to a height
of approximately 50 cm. Slots have been machined into the sides of the tank to allow
the insertion of a horizontal barrier along the length of the tank at a height of
25 cm above the bottom. The apparatus uses the novel barrier design described in
Dalziel et al. (1999) which minimizes the disturbance produced by the removal of the
barrier. The barrier consists of a flat rigid tube made of stainless steel through which
two pieces of nylon fabric are passed. Each piece is stretched through the tube and
is attached to the endwall such that they line the upper and lower surfaces of the
barrier. As the plate is removed, the nylon is pulled through the tube. Thus, the fabric
lining remains stationary as the plate is removed, and therefore the upper and lower
surfaces impart no shear stress to the fluids.

Prior to the start of an experiment, the volume below the barrier is partially filled
to a height h3 with a fluid of density ρ3. The remaining height (h2) below the barrier
is then carefully filled with a fluid of lower density ρ2 using a floating foam diffuser.
After inserting the barrier, the remaining height (h1) is filled with fluid of density ρ1.
The fluids consisted of salt (NaCl) solutions or fresh water with alcohol (isopropyl)
added to match the index of refraction of all the layers (as described in Dalziel
et al. 1999). In all the experiments, the Atwood number of the upper interface was
A12 = (ρ1 − ρ2)/(ρ1 + ρ2) kept constant at 0.0021, while the overall Atwood number
A13 = (ρ1 − ρ3)/(ρ1 + ρ3) was varied from −0.0021 to 0.0016. Given the Atwood
number independence of RT instability in the Boussinesq limit, it is more convenient
to refer to the Atwood number ratio B = A13/A12 ≈ (ρ1 − ρ3)/(ρ1 − ρ2). Thus, B was
varied from −1 to 0.75 in the experiments. The initial densities of the three layers were
measured using a Paar densitometer to determine the Atwood number, which was
found to be repeatable to within 5%. The solutions were preconditioned by exposing
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them to a 300 mbar vacuum overnight to allow them to reach thermal equilibrium
and remove most of the dissolved air. This was found necessary to prevent a plume of
bubbles from forming at the trailing edge of the barrier during the removal process.
Experiments were conducted with middle-layer thicknesses of 2.5, 5.0 and 7.5 cm, thus
keeping h2 � h1.

An experiment is initiated by removing the barrier which separates the Rayleigh–
Taylor unstable interface between fluids 1 and 2. The barrier is withdrawn manually
by pulling on the nylon fabric passing through the length of the barrier while
simultaneously pushing inward on the outer end of the barrier. The mean value of
the withdrawal time for all of the experiments here was 2.5 s with a standard deviation
of 0.28 s. A thorough discussion of the initial perturbation produced by the barrier
removal including the effects of withdrawal speed can be found in Dalziel (1994).

The experiments were visualized using the planar fluorescence technique described
by Dalziel et al. (1999). Fluorescein dye was initially added to one of the three layers
at a 1 × 10−7 g l−1 concentration. The fluids were then illuminated using a 300 W
xenon arc lamp that was positioned approximately 2.5 m from the tank. The light
from the arc lamp was reflected from a front-silvered mirror to pass upward through
a slit positioned at the bottom of the tank yielding a 2 mm thick light sheet that
passed through the centre of the tank. The resulting fluorescent images were viewed
by a monochrome CCD camera and recorded with a Super VHS video tape recorder.
The stored images were later digitized to a resolution of 512 × 512 8-bit pixels and
corrected for non-uniformity and absorption of the illuminating light sheet using the
DigImage image processing software (see Dalziel et al. 1999).

3. Results and discussion
3.1. Qualitative observations

Figure 2 is a sequence of fluorescent images showing the development of the instability
for a typical B = 0 experiment (i.e. ρ1 = ρ3) where the middle layer with initial
thickness h2 = 5.0 cm has been made visible by the addition of fluorescent dye. We
can observe in the first few images of this sequence the growth of Rayleigh–Taylor
instability on the upper unstable interface. Notice that this initial instability develops
in a similar fashion to that of the earlier two-fluid experiments of Dalziel et al. (1999),
i.e. the instability develops more quickly on the right-hand side of the tank owing to
the finite withdrawal rate and finite volume of the barrier. In addition, a plume of
heavy fluid is observed to quickly form and fall near the right-hand wall. However,
when this plume impacts the lower stable interface, its development is halted. Thus,
the late-time left-to-right asymmetry of these experiments is much less pronounced
than it is in the single-interface experiments. The lower front of the mixing zone
grows until it impacts the lower interface where its growth is halted. However, the
turbulence generated by the instability is able to deform the interface as well as
transport some of the bottom-layer fluid upward. Conversely, the upper portion of
the mixing zone grows undisturbed until it reaches the top of the tank. Because there
is a small finite amount of dye in the tank, the overall concentration is observed to
decrease noticeably with time as the thickness of the layer increases.

Figure 3 is a sequence taken from a similar B =0 experiment, but with the fluores-
cent dye initially mixed with the bottom-layer fluid. Note that the times of these images
are different than those of figure 2. The sequences in which the dye is placed in the bot-
tom layer end at τ12 = 12.84 (20 s), instead of at τ12 = 7.70 (12 s) as was the case for the
sequence with the middle layer dyed. In this sequence, we can more easily observe the
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 2. A sequence of light induced fluorescence (LIF) images showing the development
of the instability for a typical B =0 experiment (i.e. ρ1 = ρ3) where the middle layer with
h2 = 5.0 cm has been made visible by the addition of fluorescent dye. Dimensionless times (τ12)
relative to the start of the barrier removal are: (a) 1.54, (b) 2.31, (c) 3.08, (d) 3.85, (e) 4.62, (f )
5.39, (g) 6.16, (h) 6.93, (i) 7.70.

deformation of the lower interface produced by the still developing Rayleigh–Taylor
instability of the middle layer. Note that the middle-layer fluid immediately above
the lower interface will always be slightly less dense than the bottom-layer fluid, even
if the fluid initially came from the top layer. Thus, hydrostatic forces will always
act to stabilize the lower interface. Nevertheless, the turbulence of the middle region
is sufficiently intense to significantly deform the interface. In addition, the turbulent
action is able to entrain some of the bottom-layer fluid, which is easily observed in
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(d ) (e) ( f )

(g) (h) (i)

Figure 3. A sequence of LIF images for a typical B = 0 experiment with the fluorescent
dye added to the bottom layer. Dimensionless times (τ12) relative to the start of the barrier
removal are: (a) 2.57, (b) 3.85, (c) 5.14, (d) 6.42, (e) 7.70, (f ) 8.99, (g) 10.27, (h) 11.55, (i) 12.84.
The arrows adjacent to the first column of images indicates the initial position of the upper
interface (h2 = 5.0 cm).

the sequence. However, it is clear that the volume of entrained fluid remains small
when compared with the amount of fluid initially present in the bottom layer.

Figure 4 shows a sequence from an experiment where the density of the bottom
layer is larger than that of the top layer (ρ3 > ρ1) In this case, the hydrostatic forces
acting on the lower interface have been effectively doubled (B = −1 in this case,
therefore ρ3 − ρ2 is twice as large as in the B = 0 experiments). Thus, although the
instability that develops between the two upper layers is approximately the same as
that of the B =0 case, we can see that the deformation of, and entrainment across,
the lower interface has been significantly decreased. As a result, very little of the
bottom-layer fluid becomes mixed with either middle-layer or top-layer fluid.
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 4. A sequence of LIF images for a B = −1 experiment. Dimensionless times (τ12)
relative to the start of the barrier removal are: (a) 2.57, (b) 3.85, (c) 5.14, (d) 6.42, (e) 7.70,
(f ) 8.99, (g) 10.27, (h) 11.55, (i) 12.84. The arrows adjacent to the first column of images
indicates the initial position of the upper interface (h2 = 5.0 cm).

Figures 5 and 6 show the effects of decreasing the density of the bottom layer so that
it is less than that of the top layer (ρ3 < ρ1). In these experiments, hydrostatic forces
acting across the lower interface are initially stabilizing, since ρ3 is initially greater
than ρ2. However, as the instability of the upper interface develops, the density of the
fluid immediately above the lower interface increases and eventually rises above that
of the bottom layer. Thus, the lower interface eventually becomes Rayleigh–Taylor
unstable. Figure 5 shows a B = 0.25 experiment, where deformation and entrainment
of the lower layer is noticeably increased. Figure 6 shows a B = 0.75 experiment, where
the Rayleigh–Taylor instability of the bottom layer progresses very quickly such that
the entire bottom layer has been engulfed by the end of the sequence. Clearly, as A13



Rayleigh–Taylor instability in complex stratifications 259

(a) (b) (c)
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Figure 5. A sequence of LIF images for a B = 0.25 experiment. Dimensionless times (τ12)
relative to the start of the barrier removal are: (a) 2.57, (b) 3.85, (c) 5.14, (d) 6.42, (e) 7.70,
(f ) 8.99, (g) 10.27, (h) 11.55, (i) 12.84. The arrows adjacent to the first column of images
indicates the initial position of the upper interface (h2 = 5.0 cm).

approaches A12, the stabilizing effect of the lower interface becomes negligible and
the instability tends towards the classical two-layer case.

3.2. Self-similarity

One notable aspect of Rayleigh–Taylor instability is that, in its later stages of devel-
opment, it has been found to exhibit properties of a self-similar turbulent flow (Read
1984; Linden et al. 1994; Snider & Andrews 1994; Dalziel et al. 1999; Dimonte &
Schneider 2000). Self-similarity is attributed to the fact that in the later stages of
development of the fully turbulent instability the perturbation spectrum is broadband
and the higher-wavenumber aspects of the initial conditions are effectively ‘forgotten’.
Thus, there is no natural length scale other than that constructed by combining time
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Figure 6. A sequence of LIF images for a B = 0.75 experiment. Dimensionless times (τ12)
relative to the start of the barrier removal are: (a) 2.57, (b) 3.85, (c) 5.14, (d) 6.42, (e) 7.70,
(f ) 8.99, (g) 10.27, (h) 11.55, (i) 12.84. The arrows adjacent to the first column of images
indicate the initial position of the upper interface (h2 = 5.0 cm).

with gravitational acceleration. Hence, the horizontally averaged distribution of any
dependent variable (such as the density) presented in terms of the variable gt2 should
be independent of time (Youngs 1984). In the case of RT instability, the details
of this distribution can most easily be determined by considering the conservation
of energy of this flow. Note that the forgetting of the initial conditions is only an
idealization, and that recent numerical studies suggest that initial conditions may
affect the turbulent flow at late time (Cook & Dimotakis 2001). Nevertheless, self-
similarity is a useful concept in that it provides expressions that have proved to be
effective in describing the basic form of turbulent flows when allowed to evolve far
from their initial states.
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Single-interface analysis

Consider the Rayleigh–Taylor instability that develops on the interface between
two semi-infinite incompressible fluids with densities ρ1 and ρ2. Let

ρ0 =

{
ρ1 (z > 0),
ρ2 (z < 0),

designate the initial density distribution, then the conservation of mechanical energy
(neglecting viscous dissipation) can be written:

g

∫ ∞

−∞
ρ0z dz = g

∫ ∞

−∞
ρz dz + 1

2

∫ ∞

−∞
ρq2 dz, (1)

where

(·) = Lim
X,Y→∞

1

XY

∫ Y

−Y

∫ X

−X

(·) dx dy,

and q is the magnitude of the velocity vector. Equation (1) states that the potential
energy of the initially quiescent system must equal the sum of the potential and
kinetic energies later on. Note that if the densities of the two fluids are nearly equal,
then the Boussinesq approximation allows the density to be treated as a constant in
the kinetic energy integral thus,

g

∫ ∞

−∞

(
ρ0 − ρ)z dz − 1

2
ρ

∫ ∞

−∞
q2 dz = 0. (2)

Now, if the flow is assumed to be self-similar, then the distributions of density and
kinetic energy can be formulated in terms of a similarity variable ζ = z/w(t) such that

(ρ0 − ρ) = ρ̂(t)fρ(ζ ),

q2 = q̂2(t)fq2 (ζ ),

where w is the characteristic width of the mixed region. Therefore (2) becomes

gρ̂w

∫ ∞

−∞
fρ(ζ )ζ dζ − 1

2
ρq̂2

∫ ∞

−∞
fq2 (ζ ) dζ = 0, (3)

with significant contributions to the integrals only from −1 < |ζ | < 1. Note that the
integrals are independent of time. Furthermore, the magnitude of the kinetic energy
should be proportional to the square of the growth rate of the mixed region. Thus,
(3) yields

gρ̂w ∝ ρ

(
dw

dt

)2

.

In the case of Rayleigh–Taylor instability, the magnitude of the density perturbation
is constant and proportional to the density difference, ρ̂ ∝ (ρ1 − ρ2), thus

w ∝ Agt2 as A → 0, (4)

which is the well-known result. Note that the Atwood-number dependence in this
result has previously been obtained using renormalization-group theory (Glimm,
Zhang & Sharp 1991) and bubble-merger models (Alon et al. 1995).

Double interface analysis

In the two-interface RT problem investigated here, there are two regimes. At early
times when τ12 � 1, only the upper interface is unstable or active, thus the system
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evolves as the two-layer system. However, at late times when τ12 � 1, the lower
interface plays a role. The similarity analysis described above for the single-interface
system may also be applied to the late-time development of the two-interface system
in the situation of a light fluid layer of height h2 and density ρ2 surrounded by fluid
of density ρ1. In this case

ρ0 =




ρ1 (z > 0),
ρ2 (−h2 < z < 0),
ρ1 (z < −h2).

Since (2) remains unchanged, we may write.

g

∫ ∞

−∞
(ρ1 − ρ)z dz − 1

2
(ρ1 − ρ2)gh2

2 − 1
2
ρ

∫ ∞

−∞
q2 dz = 0. (5)

Scaling density and kinetic energy distributions as above,

(ρ1 − ρ) = ρ̂(t)fρ(ζ ),

q2 = q̂2(t)fq2 (ζ ),

but redefining the similarity variable ζ to allow for the fact that the density and
kinetic energy distributions rise upward as the instability evolves,

ζ = (z − z0(t))/w(t),

results in

gρ̂w

∫ ∞

−∞
fρ(ζ )

(
ζ +

z0

w

)
dζ − 1

2
(ρ1 − ρ2)

gh2
2

w
− 1

2
ρq̂2

∫ ∞

−∞
fq2 (ζ ) dζ = 0.

However, in this case the scale of the density fluctuations ρ̂ is not constant, but
decreases with time. Nevertheless the behaviour of can be estimated by considering
the conservation of mass: ∫ ∞

−∞
ρ0 dz =

∫ ∞

−∞
ρ dz. (6)

Note that (6) can be rewritten as∫ ∞

−∞
(ρ1 − ρ0) dz =

∫ ∞

−∞
(ρ1 − ρ) dz,

or

ρ̂w

∫ ∞

−∞
fρ(ζ ) dζ = (ρ1 − ρ2)h2, (7)

making

ρ̂w ∝ (ρ1 − ρ2)h2. (8)

Using (7) to eliminate the second term in (5) yields,

gρ̂w

∫ ∞

−∞
fρ(ζ )(ζ + z0/w − h2/2w) dζ − 1

2
ρq̂2

∫ ∞

−∞
fq2 (ζ ) dζ = 0.

For large times, where self-similarity is expected to apply, w � h2, and we obtain

gρ̂w

∫ ∞

−∞
fρ(ζ )(ζ + z0/w) dζ − 1

2
ρq̂2

∫ ∞

−∞
fq2 (ζ ) dζ = 0,
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which differs slightly from (3) by the inclusion of the z0/w term in the first integral.
However, if we restrict z0/w to be constant, a reasonable assumption for self-similarity,
then we again obtain

gρ̂w ∝ ρ

(
dw

dt

)2

.

Choosing ρ̂ = (ρ1 − ρ)max, and
∫ ∞

−∞ fρ(ζ ) dζ = 1 defines

w =
1

(ρ1 − ρ)max

∫ ∞

−∞
(ρ1 − ρ) dz

and makes ρ̂w = (ρ1 − ρ2)h2. Thus,

(ρ1 − ρ2)gh2 ∝ ρ

(
dw

dt

)2

or

w = γ
√

A12gh2 t as A12 → 0, (9)

where γ is a (unknown) constant of proportionality. Therefore, at late time, the
middle layer should grow linearly with time.

Now consider the conservation of a passive scalar C initially with unity
concentration in the middle layer and zero elsewhere,∫ ∞

−∞
C dz = h2. (10)

Again, self-similarity requires

C = Ĉ(t)fC(ζ ),

so that (10) may be written as

ĈwC

∫
f (ζ ) dζ = h2.

Thus, Ĉ ∝ (wC/h2)
−1. Again, choosing Ĉ = Cmax and

∫ ∞
−∞ f (ζ ) dζ = 1 defines

wC =
1

Cmax

∫ ∞

−∞
C dz,

thus,

1

Cmax

=
wC

h2

∝
√

A12g

h2

t. (11)

Equation (11) provides the form of the spreading rate and the decrease in the
maximum concentration of the self-similar mixing of a light fluid layer imbedded in
a heavier medium. However, it should be stressed that this result does not dictate
whether self-similarity will be achieved; that can only be determined by experimental
measurement. The result above indicates only that if the flow is self-similar, the
concentration of a passive scalar should follow the above relationship. It should also
be mentioned that, in addition to spreading, the layer centre z0 should rise slightly,
owing to the effects of buoyancy. Furthermore, if self-similarity applies, this centre
rises at a rate such that z0/w is constant.
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Figure 7. A plot of the ensemble-averaged mean concentration of twelve B = 0 experiments.
Shown are profiles taken at dimensionless times in the interval 2.57 � τ12 � 7.70, separated by
equal time increments of 0.385.

Experimental comparison

Figure 7 shows vertical profiles of 〈C〉, the mean concentration found by taking the
ensemble average of the horizontally averaged profiles of twelve B = 0 experiments in
which the dye was originally mixed in the middle layer with h2 = 5.0 cm. Shown in this
plot are profiles taken at dimensionless times in the interval 2.57 � τ12 � 7.70 separated
by equal time intervals of 0.385. Thus, the transition from the initial distribution is
not visible. Note that some dye is initially present in the top layer, resulting in slightly
negative concentrations in the curves which have been adjusted to yield an average
zero background level. This is a result of the fact that the middle layer must be slightly
overfilled with dyed solution before the plate is inserted. Therefore, the excess becomes
mixed with the undyed top-layer fluid. The curves of figure 7 show the steady decline
of the maximum concentration Cmax along with the spreading of the distribution. If
this turbulent flow were self-similar, the shape of the curves in the later stages would
be the same. Figure 8 shows 10 of these curves where the concentration has been scaled
by Cmax, and the vertical coordinate has been scaled and shifted using the width (w1/2)
and the centroid (zcentre) of that portion of the curve with 〈C̄〉 greater than Cmax/2.
Choosing the centroid to align the curves is arbitrary, but more robust than using
the z-location where Cmax occurs. We can easily see that, except for an anomaly that
begins to appear at τ12 = 5.78 near the upper edge of the distribution, the curves fall
on top of one another, demonstrating apparent self-similarity. (The anomaly is a result
of three-dimensional boundary effects causing disturbances emanating from the front
and back walls to intrude into the illuminated slice of the flow late in the experiments.)

Figure 9 provides an indication of the repeatability of the experiments by showing
profiles of C at τ12 = 5.0 for the 12 individual experiments making up the ensemble
averages shown in figures 7 and 8. Note that this statistical variation shown graphically
in this plot results in a 95% confidence interval for the ensemble mean values of
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Figure 8. A plot of the scaled and shifted mean concentration curves of figure 7 illustrating
self-similarity. Shown are profiles taken at dimensionless times in the interval 3.85 � τ12 � 7.70,
separated by equal time increments of 0.385.

1.0

0.8

0.6

0.4C

0.2

0

–0.2
–20 –10 0

z (cm)
10 20

–

Figure 9. A plot of the individual mean concentration curves C at τ12 = 5.0 for the 12
experiments making up the ensemble shown in figures 7 and 8.

approximately 0.03, and that this value is relatively constant in time in the later
stages of these experiments. It should be mentioned that the finite barrier removal
time slightly affects the mean profiles, producing additional variability as would
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Figure 10. A plot of 1/Cmax and zcentre/wC for the B =0 experiments with h2 = 5.0 cm.

be produced by averaging over fewer data. In addition, Dalziel (1994) compared
statistics from measurements using a thin light sheet with those using a thick sheet
thus producing averages over a greater depth in the viewing direction (60 mm) and
found essentially no difference in the quantities discussed here.

If self-similarity is achieved, we would expect linear growth in the width of the
central layer as given by wC or 1/Cmax late in the experiments, as indicated by
(11). Note that we might also consider the width w1/2, defined above, to be a suitable
measure. However, of these three, 1/Cmax can be measured with the greatest accuracy;
thus, it is viewed as a more robust choice as a width measure. Figure 10 plots 1/Cmax

as a function of time for the experiments of figures 7 and 8 showing that indeed the
curve appears to approach a straight line asymptotically late in the experiments. Also
shown on this graph is a plot of zcentre/wC = zcentreCmax/h2, which should approach
a constant value at late time, as appears to be the case. If the flow is self-similar,
we would also expect the final growth rate of 1/Cmax to depend upon the initial
layer thickness in accordance with (11). Figure 11 plots 1/Cmax as a function of the
dimensionless time scale τ12 = (A12g/h2)

1/2t for the B = 0 experiments for three values
of h2. This plot shows that, indeed, the curves appear to asymptotically approach
straight lines late in the experiments and that plotting against the dimensionless time
scale clearly collapses the data at late time. Shown on this plot is the best-fit line to
the data in the range 5 < τ12 < 10 which has a slope of 0.49 ± 0.03, where the error
estimate is the 95% confidence interval found from the statistics of the curve fit.
The convergence of the three curves in this plot strengthens the argument that
self-similarity has been achieved. The agreement with (11) is further emphasized in
figure 12 which plots the product of Cmax and τ12 − τ0 where τ0 is a virtual time
origin chosen to approximate the t-intercept of the late-time (linear) portion of the
curves in figure 11. If self-similarity were achieved, we would expect the three curves
in figure 12 to converge to a single horizontal line late in the experiments. The data
show that this is indeed the case, indicating a constant of proportionality for (11) of
approximately 0.5 (i.e. wC ≈ 0.5

√
A12gh2 t).
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Figure 11. A plot of 1/Cmax versus the dimensionless time scale τ12 for the three values of
the middle-layer thickness. �, h2 = 2.5 cm; �, 5.0 cm; �, 7.5 cm.
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Figure 12. A plot of the product of Cmax and τ12 − τ0 where τ0 is a virtual time origin chosen
to approximate the x -intercept of the late-time (linear) portion of the curves in figure 11. Key
as in figure 11.

Effect over overall stability

The self-similar relationship (11) developed in the section above strictly applies
only to the case where ρ1 = ρ3 (i.e. B = 0). However, we should note that in the
experiments where ρ1 � ρ3, the lower interface remains relatively flat at late times. It
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Figure 13. A plot of the scaled and shifted mean concentration curves of three B = −1
experiments illustrating self-similarity. Shown are profiles taken at dimensionless times in the
interval 3.47 � τ12 � 6.93, separated by equal time increments of 0.385.
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Figure 14. A plot of 1/Cmax versus τ12 for �, the B = 0 and �, B = −1 experiments.

therefore seems reasonable to model these experiments by considering the self-similar
mixing of a light fluid layer bounded below by a solid wall. In this situation, the
initial density distribution is

ρ0 =

{
ρ1 (z > h2),
ρ2 (0 < z < h2),
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Figure 15. A plot of wintegral/h2 for �, the B = 0 and �, B = −1 experiments.

and the only necessary modification to the analysis above would be to change the
lower limits of the integrals from z = −∞ to z = 0. However, this change would
yield a spreading rate identical to (11). Thus, we might also expect (11) to hold for
all cases when ρ1 � ρ3. Figure 13 is a plot similar to figure 8, but for the B = −1
experiments. In this case, the ensemble average was taken over only three experiments.
Nevertheless, the curves appear to collapse very well, suggesting self-similarity for
this set of experiments. Figure 14 is a plot of 1/Cmax versus τ12, which compares
the measurements from the B =0 and B = −1 experiments. The data show good
agreement between the two sets of experiments, both showing linear growth at late
time. The B = −1 experiments, however, do show a slight (7%) decrease in the rate of
growth which can be attributed to the slower spreading of the lower stable interface.

It should be noted that the Reynolds number of these experiments is relatively small.
In two-fluid Rayleigh–Taylor instability, the Reynolds number is usually defined using
the vertical extent of the mixing zone and its spreading rate. For these experiments,
if we choose the vertical extent of the spreading middle layer and its spreading rate,
the Reynolds number defined this way achieves a value of approximately 2500 late
in the experiments. This value, while being relatively low, is nevertheless comparable
to the largest value achieved in current numerical simulations and is similar in size
to earlier two-fluid experiments in the current apparatus, both of which have been
shown to exhibit self-similar growth.

The slower spreading of the lower interface for the B = −1 experiments is further
emphasized in figure 15 which shows a plot of,

wintegral =

∫ H

−H

〈C〉(1 − 〈C〉) dz,

which is a measure of the width of the lower interface, for different sets of the
B = 0 and B = −1 experiments in which the fluorescent dye has been placed in the
bottom layer only. Note that self-similarity would dictate that this quantity would
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also grow linearly with time, which appears to be verified by this plot for the B = 0
experiments. However, the larger density difference across the lower stable interface
in the B = −1 experiments is shown to significantly slow its spreading rate, causing
wintegral to approach a small constant value, supporting the solid-wall assumption made
above. Note that the data shown in this plot extend to significantly later time than
those of figures 11 and 12, extending beyond the time that the upper boundary of the
turbulent mixing zone reaches the top of the tank (at τ12 ≈ 8). It is therefore especially
remarkable that wintegral maintains its constant growth rate throughout this period.

The spreading rate of the middle-layer fluid in the B = 0 and B = −1 experiments is
the result of mixing at two fronts: the upper RT unstable front driven by the gravita-
tional instability of the light fluid layer, and the lower statically stable front acted upon
by turbulence generated by the RT instability of the upper interface. Thus both these
processes contribute to the observed self-similar spreading of the middle layer. How-
ever, since the lower interface in these experiments is stable and remains reasonably
flat, its contribution to the mixing of the layer is small. Thus, the observed spreading
of the layer shown in figures 11 and 14 is almost entirely the result of the development
of the upper unstable mixing front, a result supported by the similarity of the mixing
rates for the B =0 and B = −1 configurations shown in figure 14. This makes it
difficult to determine whether the self-similar behaviour observed in these experiments
is the result of the self-similar spreading at both interfaces or simply the result of the
self-similar spreading of the upper interface only, such as might be observed in the
single-interface wall-bounded flow. Indeed the mixing at each front is produced by very
different processes – RT instability at the upper front and ambient turbulence acting
upon a stable interface at the lower front – suggesting that the self-similar behaviour
of the type normally associated with RT instability is indicative of only the upper
front. However, the constant growth rate of wintegral for the B = 0 experiments observed
in figure 15 indicates that the spreading of the lower interface is consistent with that
of the upper. Thus, combined self-similarity might be applicable when ρ1 = ρ3.

3.3. Erosion of the bottom layer

The developing Rayleigh–Taylor instability of the upper unstable interface generates
turbulence which then impacts and erodes the lower stable interface. Some insight into
this process may be gained by considering the instability of the upper interface and
its subsequent evolution separately from the processes controlling the lower interface.
If the instability of the upper interface proceeds without mixing, then fluid of density
ρ1 is brought in contact with the bottom layer. Ignoring the kinetic energy this fluid
may contain, the lower interface will be unstable if ρ1 >ρ3 corresponding to B > 0,
or stable if ρ1 < ρ3 (B < 0). However, mixing between the upper and middle layers
releases less potential energy and also reduces the density that the lower layer is
exposed to, allowing the possibility of global stability even when B > 0. To determine
whether a configuration is ultimately stable or unstable, we must consider the limiting
case in which the top and middle layers are fully mixed at late times. The high mixing
efficiencies reported by previous authors (e.g. Linden et al. 1994; Holford et al. 2003)
suggest that this should be a reasonable approximation. In this situation, the post
mixing density just above the lower interface is ρmix = (h1ρ1 + h2ρ2)/(h1 + h2), giving
an effective Atwood number for the lower interface of

Amix = A13 − h2

h1 + h2

A12.

Thus, Amix > 0 indicates static stability.
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This static stability condition, of course, is only part of the story. The flow will have
significant kinetic energy by the time it reaches the lower interface. The presence of
kinetic energy suggests that even if the flow is stable according to the above criteria,
it may penetrate into or erode away the lower layer. In such a case, the controlling
parameter for this penetration or erosion process will be a Richardson number,

Ri =
	ρg


ρu2
,

where 
 and u are characteristic turbulent length and velocity scales, respectively.
Self-similarity will ensure that these will scale with the width and growth rate of the
mixing layer. Using the standard single-interface RT growth 
 ∼ w = αA12gt2 and
u ≈ βA12gt = β(A12gh/α)1/2 for the instability of the upper interface and assuming a
linear density distribution ρ(z) = (ρ1 + ρ2)/2 − (ρ1 + ρ2)z/(2h) yields the Richardson
number at the moment when the mixed region first contacts the lower layer

Ri =
2α

β

(
1 − A13

A12

)
,

that does not depend on the depth of the layers. This parameterization, however, is
insufficient by itself to describe the flow fully.

The study of mixing across stably stratified interfaces is often studied in the
laboratory by considering mixing induced by oscillating a grid a distance above or
below a stable density interface (Fernando 1991). In these experiments the entrainment
rate, defined as E = ue/u, where ue is the entrainment velocity, has been found to
have a power law dependence on the Richardson number, i.e.

E ∝ Ri−n, (12)

for Ri � 1. The value of the exponent n is typically measured in these studies; however,
its value has been observed to vary over a fairly wide range (from 1 to 1.75) and to
be a function of the Schmidt number. The oscillating grid experiments resemble the
state of our system at late time in the B = 0 and B = −1 experiments (except that the
turbulence driving the entrainment is the result of RT instability rather than mechani-
cal stirring) suggesting that (12) may also apply here. To explore this possibility, we
begin by rewriting the Richardson number in terms of our similarity solution. In
particular, noting that the similarity solution inherently requires the turbulent length
scales to scale with the width w, and the turbulent fluctuations to scale with the
growth rate dw/ dt , we define an instability-driven Richardson number appropriate
for the B = 0 experiments

RiRT =
ρ̂gw

ρ( dw/ dt)2
.

However, using (8) and since the linearity of (9) implies dw/ dt is constant, we find

RiRT =
2

γ 2
,

which is independent of time. In particular, for the B = 0 experiments described
earlier, we find γ ≈ 0.5 and Ri ≈ 8.

The situation will change and our similarity model will no longer be valid once
the upper edge of the mixing zone reaches the top of the container. Simulations (e.g.
Youngs 1991) and experiments (e.g. Dalziel 1993) have demonstrated that for classical
Rayleigh–Taylor instability, the total kinetic energy begins to decrease from the time
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Figure 16. A plot of wintegral/h2 for the three values of the middle-layer thickness.
�, h2 = 2.5 cm; �, 5.0 cm; �, 7.5 cm.

the instability reaches the boundary. While we expect a similar situation to occur here,
we note that it will take some time for the halting of further growth of the instability
to be communicated back to the lower interface. Indeed, we would expect this to scale
with the turnover time w/(dw/ dt) at the time when the mixing zone reaches the top.
From (9), we see that this time scale is simply the time it takes for the mixing zone to
reach the top, and so we anticipate the Richardson number will remain approximately
constant for a long time after the growth of the instability has ceased.

Returning to (12) and noting again that u ∝ dw/dt , we can now relate the
entrainment velocity to the results of our similarity model,

ue ∝ dw

dt
RiRT

−n = γ
√

A12gh2

(
2

γ 2

)−n

, (13)

which is constant during the active phase of the RT instability. In our experiments,
ue can be interpreted as the growth of the region containing bottom-layer fluid. This
growth is characterized by dwintegral/dt . Integrating (13) suggests that

wIntegral ∝ wRiRT
−n ∝ h2τ12. (14)

The experimental agreement with (14) is illustrated in figure 16 which plots wintegral/h2

versus τ12 for the B = 0 experiments. In this case, the Richardson number is the same
for the three sets of experiments having different values of h2. Therefore the three
curves should have the same slope at late time, which appears to be verified by the
data. That (14) is linear in time provides additional support for our similarity model.
Indeed, our very assertion of self-similarity means that since we found w to be linear
in time, then wintegral must also be linear or else the model is invalid. It is important to
note, however, that the linearity of wintegral is not a direct consequence of the linearity
of w, but rather a consequence of the Richardson-number-dependent entrainment law
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Figure 17. A plot of wintegral/h2 for the B = −1 data of figure 15 along with a curve fit of a
function of the form (16) yielding the Richardson number exponent of n = 1.29.

we have used. This consistency between separately and independently derived models
is reassuring, but ultimately is a necessary consequence of dimensional analysis.

The Richardson number can be modified slightly to describe the situation of
a bottom-layer density ρ3 differing from ρ1 if we assume that the turbulent flow
generated by development of the instability of the middle layer is the same as that
in the B = 0 configurations. This assumption is reasonable as experiments with grid-
generated turbulence in a variety of configurations suggest that only around 5% of
the available kinetic energy is lost to mixing across an interface at these Richardson
numbers (Holford & Linden 1999). Defining 	ρ = (ρ3 − ρ)max = ρ̂ − (ρ1 − ρ3), we
find

RiRT =
2

γ 2

[
1 − γ

A13

A12

√
A12g

h2

t

]
=

2

γ 2
(1 − γBτ12).

Thus, the Richardson number in the B = −1 experiments is time dependent. Rewriting
(13) in terms of the time-dependent Richardson number yields

d

dτ12

(
wintegral

h2

)
∝ d

dτ12

(
w

h2

)
RiRT

−n = γ

[
2

γ 2

(
1 − γBτ12

)]−n

,

which can be integrated to obtain

wintegral

h2

∝ − 1

B(n − 1)

(
2

γ 2

)−n

[1 − (1 − γBτ12)
1−n] for n �= 1. (15)

Thus, it would appear reasonable to curve fit a function of this form to the B = −1
case of figure 15 to extract a value for the exponent n (figure 17). Unfortunately,
the amount of scatter and lack of curvature of this data do not yield reliable values
for both a proportionality constant and exponent n. However, if we assume that
the constant of proportionality in (15) is the same for both B = 0 and B = −1, this
constant can be reliably extracted from the B = 0 data of figure 15 by fitting a line
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Figure 18. A plot of wintegral/h2 for experiments where B is varied from −1 to 0.75.

to the data which yields a slope 0.0433 ± 0.002. Then fitting a function of the form

wintegral

h2

=
0.0433

0.49(n − 1)
[1 − {1 + 0.49(τ12 − 1.72)}1−n] (16)

(which uses the virtual time origin found in the section above) to the B = −1 data
yields a value of n = 1.29, which lies in the middle of the range found in oscillating
grid experiments. The 95% confidence interval based on the errors of the components
used to compute this value is ± 0.14. However, the accuracy of this computed
exponent is probably more strongly influenced on assumptions made in deriving (16).

While, for the present experiments, we do not have any direct measurements of the
mixing efficiency for the lower interface, we anticipate that the mixing efficiency would
be comparable with that found for mixing-box experiments owing to the similarity
in the entrainment mechanism and exponent for the entrainment law. This efficiency,
typically around 5% in mixing-box experiments, is substantially lower than the nearly
50% efficiency found in two-layer Rayleigh–Taylor instability. Thus, as we suggested
earlier, the energy lost to mixing across the lower interface from the developing
instability is minimal.

3.4. The late-time unstable configuration

Figure 18 shows wintegral for all of the experiments including those where at late
time, the lower interface is Rayleigh–Taylor unstable (i.e. B > 0). In contrast to the
cases with stable late-time stratifications (B = −1 and 0), which appear to grow
linearly with time, the B > 0 cases clearly show the accelerating growth behaviour
of two-layer Rayleigh–Taylor instability. Figure 19 replots the B > 0 data as wintegral/

h3τ
2
13 = wintegral/A13gt2, where τ13 = (A13g/h3)

1/2t . That the two most unstable con-
figurations (B =0.5 and 0.75) converge to a constant of approximately 0.02 (i.e.
wintegral →0.02A13gt2) indicates self-similar behaviour similar to that found in two-layer
Rayleigh–Taylor instability. Indeed, this value is in close agreement with the value
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Figure 19. A plot of wintegral/A13gt2 which should cause the unstable configurations to
converge to a single horizontal line late in the experiments if they follow Rayleigh–Taylor
self-similarity. �, B = 0.25; �, 0.50; �, 7.5.

obtained from the earlier single-interface Rayleigh–Taylor experiments of Dalziel
et al. (1999) which found this constant to be approximately 0.023. Also, if we assume
a linear mean concentration profile, which would make wintegral = δ/3 where δ is
the half-layer width, our result yields a value of α in good agreement with the
experiments of Dimonte & Schneider (2000). Thus, in the case of the two most
unstable configurations, the presence of the middle layer is relatively unimportant.
The turbulence generated by the instability of the upper interface (which is driven
by the stronger A12 density contrast), and the dilution effect of the presence of the
middle layer (which reduces the density contrast across the lower interface), appears
to produce very little effect on the growth of the instability of the lower interface,
although we expect that if the depth of the middle layer were sufficiently large, then
the dilution of the top-layer fluid before it reached the bottom layer would play a role.
The least unstable configuration (B = 0.25) similarly converges to a horizontal line
in figure 19. However, in this case, the constant of proportionality is approximately
twice as large. Thus, in this case, the turbulence generated by the instability of the
upper interface has a much more pronounced effect on the slower-growing late-time
instability. The background turbulence generated by the instability of the upper
interface, which is much stronger than that produced by the instability between the
top- and bottom-layer fluids, apparently produces a significant increase in the mixing
rate across the lower interface.

3.5. Molecular mixing

The integral measure of interface width, wintegral, includes the effects of both molecular
mixing and surface deformation in that both diffusion and surface deformation will
result in an increase in this parameter. In order to investigate the relative importance
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Figure 20. A plot of the global mixing fraction for the late-time stable configurations.
�, B = 0; �, −1.

of these two processes, Linden et al. (1994) defined the global mixing fraction

Θ̂ =

∫ H

−H

〈C(1 − C)〉 dz

/∫ H

−H

〈C〉(1 − 〈C〉) dz, (17)

which is a measure of the fraction of wintegral that can be attributed to molecular mixing
alone. Note that the numerator of (17) is an integral measure similar to wintegral. This is
proportional to the quantity of mixed fluid and is insensitive to the effects of surface
deformation. Thus, Θ̂ = 0 when there is no molecular mixing and Θ̂ → 1 when
the system becomes uniformly mixed. It should be stressed that the resolution of the
images and the thickness of the light sheet are not adequate to resolve the Kolmogorov
scale, estimated as η ∼ δRe−3/4

δ where Reδ is a suitably chosen Reynolds number.
In these experiments, the Reynolds number, defined using the vertical extent of the
spreading middle layer and its spreading rate, achieves a value of approximately 2500
late in the experiments thus yielding a value of η ≈ 0.4 mm. Note that the diffusion
scale is much smaller than the Kolmogorov scale owing to the relatively large value
of the Schmidt numbers for both salt (≈ 200) and fluorescein (≈ 2000). Therefore, the
image data are incapable of capturing the finest scalar fluctuations. However, since
Θ̂ has been calculated in the previous RT experiments which had similar resolution
limitations, it is useful to compute Θ̂ for our experiments in order to make comparison
with the previous two-layer experiments.

Figure 20 is a plot of Θ̂ for the late-time stable configurations with B = 0 and
B = −1. In this plot, the mixing fraction is observed to be relatively constant, attaining
a value of 0.5 to 0.6 at late time. This time independence is anticipated since we
should expect Θ̂ to be constant in a self-similar flow. Figure 21 is a similar plot for
the late-time Rayleigh–Taylor unstable configurations (B > 0). Note that in this case,
Θ̂ appears to approach 0.8 at late times, a result in agreement with the two-layer RT
experiments of Linden et al. (1994). However, the convergence toward this value does
not occur until very late time, at which point the finite volume of the fluid container
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Figure 21. A plot of the global mixing fraction for the late-time unstable configurations.
�, B = 0.75; �, 0.50; �, 0.25.

is an important influence. We anticipate that if the instability were allowed to evolve
in an infinite container, and thus remained self-similar, we should expect a constant
value of Θ̂ , similar to the late-time stable RT experiments of figure 20. This indeed
appears to occur at intermediate times in figure 21 where we can see a levelling off in
the value of Θ̂ again at a value of approximately 0.5 to 0.6. However, self-similarity
will be broken at late time, when the mixing zone reaches the container top, spurring
the further increase in Θ̂ , driving it towards its asymptotic value.

4. Conclusions
The experiments presented here study the Rayleigh–Taylor instability of a three-

layer system having one unstable and one stable interface. Most of the experiments
were conducted with the density of the fluid in the bottom layer equalling that in the
top layer. In this case, measurements of the horizontally averaged concentration of
a fluorescent dye mixed in the middle layer suggests that the instability grows self-
similarly in time, as demonstrated by the collapse of the mean concentration profiles
when plotted in similarity coordinates. Self-similarity is further indicated because the
width of the mean profiles is found to grow linearly in time, which is consistent with
a buoyancy-driven self-similar flow that conserves both mass and mechanical energy.
Collapse of the mean concentration profiles and linear growth of the width is also
observed when the density of the bottom layer is increased above that of the top
layer. However, because the mixing rate in these experiments is dominated by the
Rayleigh–Taylor mixing occurring at the upper front, the observed self-similarity may
only be indicative of the spreading of the upper interface such as would occur in the
RT instability of a light fluid layer bounded below by a solid wall.

In the configuration where the top- and bottom-layer densities are the same, the
erosion of the bottom-layer fluid by the turbulence generated by the upper unstable
interface is found to be small owing to the fact that this interface is always stably
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stratified. When the density of the bottom layer is increased above that of the top
layer, the degree of erosion is further decreased. In the cases where the lower interface
is stably stratified at late time, the spreading rate of the interface is found to be
in agreement with an entrainment assumption in the form of a power law of the
Richardson number with an exponent of approximately 1.3. This result is in good
agreement with studies of the mixing across a stably stratified interface by turbulence
generated using oscillating grids, and we anticipate that other related quantities, such
as the mixing efficiency of this entrainment, will also be similar. Introduction of
the entrainment hypothesis acts as a closure to our similarity model, and yields a
constant rate of erosion of the bottom layer as the top of the mixing zone advances
towards the top of the container. Although the similarity model breaks down once
the mixing zone reaches the top, the entrainment across the lower interface continues
to be constant for the eddy turnover time required to communicate this back to the
lower interface.

When the density of the bottom layer is decreased below that of the top layer, the
erosion increases as expected. However, in this case, the overall density distribution
is such that it is Rayleigh–Taylor unstable at late time (i.e. ρ1 > ρ3 and h2 � h1,). In
this situation, the turbulent mixing region at late times is found to grow similarly
to that of single-interface Rayleigh–Taylor instability that lacks the middle layer
with approximately the same value of the growth constant. In these experiments, the
global mixing fraction approaches 0.8, in agreement with the earlier two-layer study
of Linden et al. (1994). However, at intermediate times in the development, where we
would expect self-similarity, the mixing fraction appears to take on a constant value.

The central role of Rayleigh–Taylor instability in mixing in geophysical and
industrial flows is widely recognized. While our understanding of the dynamics
of the instability, and the role played by the initial conditions, has increased greatly
in recent years, most previous work has been restricted to the ‘ideal’ situation of a
nominally planar horizontal interface separating two layers of approximately equal
depth. However, naturally occurring manifestations of the instability will seldom arise
from such ideal conditions. In geophysical flows, the instability will often develop as
the result of breaking internal gravity waves, giving initial conditions characterized by
both shear and complex stratifications that contain both stable and unstable portions.
While the present study does not address directly the issue of the mixing produced,
it does offer insight into the way that the turbulence generated by the instability
can drive an entrainment across a neighbouring stable interface. Of key importance
here is that the entrainment law appears to be consistent with that found from other
sources of external mixing experiments.

REFERENCES

Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor
and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74, 534–537.

Baines, W. D. 1975 Entrainment by a plume or jet at a density interface. J. Fluid Mech. 68, 309–320.

Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 1998 Dynamics of interfaces in a
stratified turbulent flow. J. Fluid Mech. 355, 329–358.

Briggs, D. A., Ferziger, J. H., Koseff, J. R. & Monismith, S. G. 1998 Turbulent mixing in a
shear-free stably stratified two-layer fluid. J. Fluid Mech. 354, 175–208.

Cook, A. W. & Dimotakis, P. E. 2001 Transition stages of Rayleigh–Taylor instability between
miscible fluids. J. Fluid Mech. 443, 69–99.

Dalziel, S. B. 1993 Rayleigh–Taylor instability: experiments with image analysis. Dyn. Atmos.
Oceans 20, 127–153.



Rayleigh–Taylor instability in complex stratifications 279

Dalziel, S. B. 1994 Final report: molecular mixing in Rayleigh–Taylor instability. Report for AWE,
91 pp.

Dalziel, S. B., Linden, P. F. & Youngs, D. L. 1999 Self-similarity and internal structure of
turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 1–48.

Dimonte, G. & Schneider, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for
sustained and impulsive acceleration histories. Phys. Fluids 12, 304–321.

Dimonte, G., Youngs, D. L., Dimits, A. et al. 2004 A comparative study of the turbulent Rayleigh–
Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-
Group collaboration. Phys. Fluids 16, 1668–1693.

Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455–493.

Glimm, J., Zhang, Q. & Sharp, D. H. 1991 The renormalization group dynamics of chaotic mixing
of unstable interfaces. Phys. Fluids A 3, 1333–1335.

Higginson, R. C. 2000 Turbulence and mixing in a stratified fluid. PhD thesis, University of
Cambridge.

Holford, J. M., Dalziel, S. B. & Youngs, D. L. 2003 Rayleigh–Taylor instability at a tilted interface
in laboratory experiments and numerical simulations. Laser Particle Beams 21, 419–423.

Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30,
173–198.

Kumagai, M. 1984 Turbulent buoyant convection from a source in a confined two-layer region.
J. Fluid Mech. 147, 105–131.

Linden, P. F. & Redondo, J. M. 1991 Molecular mixing in Rayleigh–Taylor instability. Part I.
Global mixing. Phys. Fluids A 3, 1269–1277.

Linden, P. F., Redondo, J. M. & Youngs, D. L. 1994 Molecular mixing in Rayleigh–Taylor
instability. J. Fluid Mech. 265, 97–124.

Nokes, R. I. 1988 On the entrainment rate across a density interface. J. Fluid Mech. 188, 185–204.

Rayleigh, Lord 1900 Investigation of the character of the equilibrium of an incompressible heavy
fluid of variable density. The Scientific Papers of Lord Rayleigh, vol. 2, pp.200–207. Cambridge
University Press.

Read, K. I. 1984 Experimental investigation of turbulent mixing by Rayleigh–Taylor instability.
Physica D 12, 45–58.

Sharp, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12, 3–18.

Snider, D. M. & Andrews, M. J. 1994 Rayleigh–Taylor and shear driven mixing with an unstable
thermal stratification. Phys. Fluids 6, 3324–3334.

Strang, E. & Fernando, H. J. S. 2001 Entrainment and mixing in stratified shear flows. J. Fluid
Mech. 428, 349–386.

Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular
to their planes. Proc. R. Soc. Lond. A 201, 192–196.

Youngs, D. L. 1984 Numerical simulation of turbulent mixing by Rayleigh–Taylor instability.
Physica D 12, 32–44.

Youngs, D. L. 1991 Three-dimensional numerical simulation of turbulent mixing by Rayleigh–
Taylor instability. Phys. Fluids A 3, 1312–1320.




